Decoders

class multimodal_compare.models.decoders.Dec_CNN(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_FNN(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_MNIST(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_MNIST2(latent_dim, data_dim, latent_private, num_hidden_layers=1)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_PolyMNIST(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_SVHN(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_SVHN2(latent_dim, data_dim, latent_private)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

z (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_Transformer(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=4, num_heads=2, dropout=0.1, activation='gelu')

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list with sampled latent vectors z and (optionally) boolean masks for desired lengths

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_TransformerIMG(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=4, num_heads=4, dropout=0.1, activation='gelu')

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list with sampled latent vectors z and (optionally) boolean masks for desired lengths

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_TxtTransformer(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=8, num_heads=2, dropout=0.1, activation='gelu')

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list with sampled latent vectors z and (optionally) boolean masks for desired lengths

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.Dec_VideoGPT(latent_dim, data_dim, latent_private, n_res_layers=4)

Bases: VaeDecoder

_is_full_backward_hook: bool | None
forward(z)

Forward pass

Parameters:

x (torch.tensor) – sampled latent vectors z

Returns:

output reconstructions, log variance

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.decoders.VaeDecoder(latent_dim, data_dim, latent_private, net_type: NetworkTypes)

Bases: VaeComponent

_is_full_backward_hook: bool | None
training: bool
multimodal_compare.models.decoders.extra_hidden_layer(hidden_dim)