Encoders

class multimodal_compare.models.encoders.Enc_CNN(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_FNN(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_MNIST(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_MNIST2(latent_dim, data_dim, latent_private, num_hidden_layers=1)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_PolyMNIST(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_SVHN(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_SVHN2(latent_dim, data_dim, latent_private)

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_Transformer(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=8, num_heads=2, dropout=0.1, activation='gelu')

Bases: VaeEncoder

Transformer VAE as implemented in https://github.com/Mathux/ACTOR

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list of a data batch and boolean masks for the sequences

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_TransformerIMG(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=8, num_heads=4, dropout=0.1, activation='gelu')

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list of a data batch and boolean masks for the sequences

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_TxtTransformer(latent_dim, data_dim, latent_private, ff_size=1024, num_layers=8, num_heads=2, dropout=0.1, activation='gelu')

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(batch)

Forward pass

Parameters:

batch (list, torch.tensor) – list of a data batch and boolean masks for the sequences

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.Enc_VideoGPT(latent_dim, data_dim, latent_private, n_res_layers=4, downsample=(2, 4, 4))

Bases: VaeEncoder

_is_full_backward_hook: bool | None
forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.VaeComponent(latent_dim: int, data_dim: tuple, latent_private=None, net_type=NetworkTypes.UNSPECIFIED, net_role=NetworkRoles.UNSPECIFIED)

Bases: Module

_is_full_backward_hook: bool | None
abstract forward(x)

Forward pass

Parameters:

x (list, torch.tensor) – data batch

Returns:

tensor of means, tensor of log variances

Return type:

tuple(torch.tensor, torch.tensor)

training: bool
class multimodal_compare.models.encoders.VaeEncoder(latent_dim, data_dim, latent_private, net_type: NetworkTypes)

Bases: VaeComponent

_backward_hooks: Dict[int, Callable]
_buffers: Dict[str, Tensor | None]
_forward_hooks: Dict[int, Callable]
_forward_pre_hooks: Dict[int, Callable]
_is_full_backward_hook: bool | None
_load_state_dict_post_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_modules: Dict[str, 'Module' | None]
_non_persistent_buffers_set: Set[str]
_parameters: Dict[str, Parameter | None]
_state_dict_hooks: Dict[int, Callable]
training: bool
multimodal_compare.models.encoders.extra_hidden_layer(hidden_dim)