Evaluate on CdSprites+ dataset

multimodal_compare.eval.eval_cdsprites.calculate_cross_coherency(model_exp, classifiers)

Calculates the cross-coherency accuracy for the given model (Img -> Txt and Txt -> Img)

Parameters:

model (object) – multimodal VAE

Returns:

mean cross accuracies

Return type:

dict

multimodal_compare.eval.eval_cdsprites.calculate_joint_coherency(model_exp, classifiers)

Calculates the joint-coherency accuracy for the given model

Parameters:

model (object) – multimodal VAE

Returns:

mean joint accuracy

Return type:

dict

multimodal_compare.eval.eval_cdsprites.check_cross_sample_correct(testtext, m_exp, classifiers=None, reconimage=None, recontext=None)

Detects the features in images/text and checks if they are coherent

Parameters:
  • testtext (str) – ground truth text input

  • reconimage (ndarray) – reconstructed image

  • recontext (str) – reconstructed text

Returns:

returns whether the sample is completely correct, how many features are ok, how many letters are ok

Return type:

tuple(Bool, float32, float32)

multimodal_compare.eval.eval_cdsprites.count_same_letters(a, b)

Counts how many characters are the same in two strings.

Parameters:
  • a (str) – string 1

  • b (str) – string 2

Returns:

number of matching characters

Return type:

int

multimodal_compare.eval.eval_cdsprites.eval_all(model_exp, classifiers)
multimodal_compare.eval.eval_cdsprites.eval_cdsprites_over_seeds(parent_dir)
multimodal_compare.eval.eval_cdsprites.eval_single_model(m_exp)
multimodal_compare.eval.eval_cdsprites.eval_with_classifier(classifier, image, att)
multimodal_compare.eval.eval_cdsprites.fill_cats(text_image, image_text, joint, data)
multimodal_compare.eval.eval_cdsprites.find_in_list(target, source)
Parameters:
  • target

  • source

Returns:

Return type:

multimodal_compare.eval.eval_cdsprites.get_all_classifiers(level)
multimodal_compare.eval.eval_cdsprites.get_attribute(attribute, txt)
Parameters:
  • attribute

  • txt

Returns:

Return type:

multimodal_compare.eval.eval_cdsprites.get_attribute_from_recon(attribute, txt, m_exp)
Parameters:
  • attribute

  • txt

Returns:

Return type:

multimodal_compare.eval.eval_cdsprites.get_mean_stats(list_of_stats, percentage=True)

Returns a list of means for a nested list with accuracies

Parameters:
  • list_of_stats (list) – multiple lists with accuracies

  • percentage (bool) – whether to report the number as percent (True) or fraction (False)

Returns:

a list of means of the accuracies

Return type:

list

multimodal_compare.eval.eval_cdsprites.get_mod_mappings(mod_dict)
multimodal_compare.eval.eval_cdsprites.image_to_text(imgs, model_exp)

Reconstructs image from the text input using the provided model :param imgs: list of images to reconstruct :type imgs: list :param model: model object :type model: object :param path: where to save the outputs :type path: str :return: returns reconstructed images and texts :rtype: tuple(list, list)

multimodal_compare.eval.eval_cdsprites.load_classifier(level: int, class_type: str)
multimodal_compare.eval.eval_cdsprites.load_images(path)

Loads .png images from a dir path

Parameters:

path (str) – path to the folder

Returns:

list of ndarrays

Return type:

list

multimodal_compare.eval.eval_cdsprites.manhattan_distance(a, b)

Calculates the Manharran distance between two vectors

Parameters:
  • a (tuple) – vec 1

  • b (tuple) – vec 2

Returns:

distance

Return type:

float

multimodal_compare.eval.eval_cdsprites.search_att(txt, source, idx=None, indices=None)
Parameters:
  • txt

  • source

  • idx

  • indices

Returns:

Return type:

multimodal_compare.eval.eval_cdsprites.text_to_image(text, model_exp)

Reconstructs text from the image input using the provided model :param text: list of strings to reconstruct :type text: list :param model: model object :type model: object :param path: where to save the outputs :type path: str :return: returns reconstructed images and also texts :rtype: tuple(list, list)

multimodal_compare.eval.eval_cdsprites.try_retrieve_atts(txt, m_exp)
Parameters:

txt

Returns:

Return type: